If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x+10x^2-50=0
a = 10; b = 16; c = -50;
Δ = b2-4ac
Δ = 162-4·10·(-50)
Δ = 2256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2256}=\sqrt{16*141}=\sqrt{16}*\sqrt{141}=4\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{141}}{2*10}=\frac{-16-4\sqrt{141}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{141}}{2*10}=\frac{-16+4\sqrt{141}}{20} $
| 2(x-1/4)=6(1/3x-x) | | -282=2t | | 4000=1600+8p. | | 4=7(n-3)-6n | | -7k-63=5k-45 | | 25-y=y+1 | | 3n=4n+6.2=-14.4 | | (w-50)=180 | | 3x+5=21+(-2x) | | 5x-10=-52 | | 2x+3=(1/2)x+30 | | (4x-13)+(3x+19)=360 | | 6p-21=9+3p | | 2m=-36 | | 3x+26=42 | | 5/13=u/7 | | x+5+8=11 | | (x+48)=131 | | -0.8(x)+7=-5 | | -2n+3=3-2n | | 5m-45=-95 | | (5x+2)/3+2−(2x−3)/4=1/2 | | 4(2x+1)-2(3-4x)=6-4(2-4x) | | 1/2+-2/3x=6/5 | | 0.8(x)+7=-5 | | –7b+8=–7b | | 4x-21=72/7 | | -3j-4=-3j+1 | | 0.5-0.4x=4 | | 6(x−6)+4=8x−10 | | 11x-21=x+7 | | (2x-6)+(7x-36)+90=180 |